451 research outputs found

    M-Phenomenology

    Get PDF
    Recent developments involving strongly coupled superstrings are discussed from a phenomenological point of view. In particular, strongly coupled E8×E8E_8\times E'_8 is described as an appropriate long-wavelength limit of M-theory, and some generic phenomenological implications are analyzed, including a long sought downward shift of the string unification scale and a novel way to break supersymmetry. A specific scenario is presented that leads to a rather light, and thus presently experimentally testable, sparticle spectrum.Comment: 22 pages, 2 figure

    The Electroweak Phase Transition in Minimal Supergravity Models

    Full text link
    We have explored the electroweak phase transition in minimal supergravity models by extending previous analysis of the one-loop Higgs potential to include finite temperature effects. Minimal supergravity is characterized by two higgs doublets at the electroweak scale, gauge coupling unification, and universal soft-SUSY breaking at the unification scale. We have searched for the allowed parameter space that avoids washout of baryon number via unsuppressed anomalous Electroweak sphaleron processes after the phase transition. This requirement imposes strong constraints on the Higgs sector. With respect to weak scale baryogenesis, we find that the generic MSSM is {\it not} phenomenologically acceptable, and show that the additional experimental and consistency constraints of minimal supergravity restricts the mass of the lightest CP-even Higgs even further to m_h\lsim 32\GeV (at one loop), also in conflict with experiment. Thus, if supergravity is to allow for baryogenesis via any other mechanism above the weak scale, it {\it must} also provide for B-L production (or some other `accidentally' conserved quantity) above the electroweak scale. Finally, we suggest that the no-scale flipped SU(5)SU(5) supergravity model can naturally and economically provide a source of B-L violation and realistically account for the observed ratio nB/nγ1010n_B/n_\gamma\sim 10^{-10}.Comment: 14 pages (not including two postscript figures available upon request

    A Non-critical String (Liouville) Approach to Brain Microtubules: State Vector reduction, Memory coding and Capacity

    Get PDF
    Microtubule (MT) networks, subneural paracrystalline cytosceletal structures, seem to play a fundamental role in the neurons. We cast here the complicated MT dynamics in the form of a 1+11+1-dimensional non-critical string theory, thus enabling us to provide a consistent quantum treatment of MTs, including enviromental {\em friction} effects. Quantum space-time effects, as described by non-critical string theory, trigger then an {\em organized collapse} of the coherent states down to a specific or {\em conscious state}. The whole process we estimate to take O(1sec){\cal O}(1\,{\rm sec}). The {\em microscopic arrow of time}, endemic in non-critical string theory, and apparent here in the self-collapse process, provides a satisfactory and simple resolution to the age-old problem of how the, central to our feelings of awareness, sensation of the progression of time is generated. In addition, the complete integrability of the stringy model for MT we advocate in this work proves sufficient in providing a satisfactory solution to memory coding and capacity. Such features might turn out to be important for a model of the brain as a quantum computer.Comment: 70 pages Latex, 4 figures (not included), minor corrections, no effect on conclusion

    On a possible connection of non-critical strings to certain aspects of quantum brain function

    Get PDF
    We review certain aspects of brain function which could be associated with non-critical (Liouville) string theory. In particular we simulate the physics of brain microtubules (MT) by using a (completely integrable) non-critical string, we discuss the collapse of the wave function as a result of quantum gravity effects due to abrupt conformational changes of the MT protein dimers, and we propose a new mechanism for memory coding.Comment: Invited talk by D.V. Nanopoulos at the `four-seas conference', Trieste (Italy), 25 June-1 July 1995; latex file, 9 pages, one macro: 4seas95.sty, available from archive

    Flipped Cryptons and the UHECRs

    Get PDF
    Cryptons are metastable bound states of fractionally-charged particles that arise generically in the hidden sectors of models derived from heterotic string. We study their properties and decay modes in a specific flipped SU(5) model with long-lived four-particle spin-zero bound states called {\it tetrons}. We show that the neutral tetrons are metastable, and exhibit the tenth-order non-renormalizable superpotential operators responsible for their dominant decays. By analogy with QCD, we expect charged tetrons to be somewhat heavier, and to decay relatively rapidly via lower-order interactions that we also exhibit. The expected masses and lifetimes of the neutral tetrons make them good candidates for cold dark matter (CDM), and a potential source of the ultra-high energy cosmic rays (UHECRs) which have been observed, whereas the charged tetrons would have decayed in the early Universe.Comment: 8 Pages RevTex. New version with expanded introduction to flipped SU(5). Accepted for publication in PR
    corecore